Modelo mixto con un estimador suavizado de la densidad de los efectos aleatorios. Una aplicación

Fecha

2017-11-22

Título de la revista

ISSN de la revista

Título del volumen

Editor

Resumen
Una herramienta importante para el análisis de datos longitudinales son los modelos lineales mixtos. Estos modelos expresan los parámetros específicos de las unidades en función de efectos fijos y aleatorios y para considerar la correlación entre las mediciones repetidas se introducen errores intra unidad. Un supuesto usado habitualmente es el de distribución normal para los errores y los efectos aleatorios. El supuesto sobre estos últimos suele no ser acertado y su cumplimiento puede ser dificultoso de verificar con las herramientas estadísticas estándares. Debido a que la predicción de los efectos aleatorios depende tanto de los errores como de los efectos aleatorios, los gráficos usuales para comprobar el supuesto de normalidad no permiten diferenciar cual de los dos supuestos distribucionales es el incorrecto. Varios autores propusieron métodos que relajan el supuesto de normalidad de los efectos aleatorios y utilizan técnicas de suavizado para aproximar la distribución de los mismos. Este trabajo presenta una reseña de algunos de ellos y se utiliza el enfoque denominado modelo mixto con mezclas gaussianas penalizado para la aplicación

Palabras clave

Datos longitudinales, Modelos mixtos, Efectos aleatorios, Densidad suavizada, Longitudinal data Mixed models Random effects Smooth density

Citación